

GESTI.S.CO.

"Gestione delle emergenze senza confini"

Interreg V-A Italia - Svizzera 2014 – 2020

Asse 5 Obiettivo Specifico 5.1.

id: 475062

WP	WP3 Rafforzamento del quadro comune di informazioni		
Attività	3.3 Analisi territoriale dei rischi e scenari di evento		
Prodotto	P16: Piattaforma mappe territoriali del rischio naturale e degli scenari di evento transfrontalieri corredate da documento di analisi		
Versione	1.00		
Data	11 giugno 2021		

ANALISI TERRITORIALE DEI RISCHI E SCENARI DI EVENTO Frane superficiali

Elaborato a cura del Politecnico di Milano

Sommario

ntroduzione	. 3
Dati di input	. 3
Dati topografici	. 3
Dati geologici	. 4
Dati di copertura del suolo	. 7
letodo di analisi	. 8
Risultati	10
Bibliografia	11

Introduzione

Il prodotto illustra la propensione allo scivolamento superficiale o soil slip dei depositi detritici identificati all'interno del territorio di studio. Applicando la teoria dell'equilibrio del pendio indefinito sotto l'ipotesi di totale assenza di un moto di filtrazione subsuperficiale, si identificano "a priori" i depositi che presentano una naturale propensione al fenomeno in esame. L'analisi, sviluppata su un modello "pixel-based", richiede in ingresso solamente il DTM, il tipo di copertura del suolo e le caratteristiche fisiche e meccaniche dei depositi superficiali. Questi sono guindi classificati in due macrocategorie, a prescindere dal grado di saturazione della coltre detritica: "deposito stabile" qualora la stabilità della coltre allo scivolamento sia valida incondizionatamente e "deposito propenso allo scivolamento superficiale" nel caso in cui l'analisi a priori della stabilità non possa escludere il verificarsi del fenomeno. L'obiettivo di tale prodotto è quello di attenzionare sulle aree con propensione allo scivolamento che, a causa della loro prossimità a insediamenti o vie di comunicazione strategiche, risultano essere più critiche a livello transfrontaliero. Il grado di propensione del territorio al franamento superficiale può essere poi approfondito localmente con studi di dettaglio alla scala di versante, applicando ad esempio un modello fisicamente basato in grado di accoppiare nel tempo le leggi della stabilità dei pendii a quelle relative ai processi idrologici innescati da un determinato evento di precipitazione.

Dati di input

Dati topografici

Il modello digitale del terreno (DTM) impiegato è quello prodotto all'interno del progetto di ricerca con risoluzione di 5 m e risulta adatto alla modellazione numerica del fenomeno in oggetto.

Dal modello digitale del terreno è stato possibile ricavare la mappa delle pendenze, attraverso calcoli trigonometrici. La pendenza locale di ogni cella del raster è ricavata dalla percentuale di variazione dell'elevazione rispetto alle otto celle circostanti, con semplici formule trigonometriche.

Data una cella (i,j) di area A e quota q(i,j), la sua pendenza $\theta(i,j)$ è, infatti, data da:

$$\theta(i,j) = \operatorname{atan}\left(\sqrt{\frac{(dz/dx)^2}{(dz/dy)^2}}\right)$$
$$\operatorname{con} \frac{dz}{dx} = \frac{(q(i+1,j+1)+2q(i+1,j)+q(i+1,j-1))-(q(i-1,j+1)+2q(i-1,j)+q(i-1,j-1)))}{8\sqrt{A}}\mathbf{e}$$
$$\frac{dz}{dy} = \frac{(q(i-1,j-1)+2q(i,j+1)+q(i+1,j+1))-(q(i-1,j-1)+2q(i,j-1)+q(i+1,j-1))}{8\sqrt{A}}.$$

Fondo Europeo di Sviluppo Regionale

Dati geologici

Le frane superficiali o soil slip sono definite come frane per saturazione e fluidificazione dei terreni detritici superficiali, perciò riguardano solamente la coltre detritica di materiale non coeso che permette la filtrazione e il flusso subsuperficiale (Varnes, 1978). L'analisi si è quindi concentrata solamente sui terreni sciolti quaternari, ignorando le aree per le quali nella carta geologica non fosse esplicitata la copertura detritica, a maggior ragione sottolineando che le proprietà geomeccaniche di un suolo non dipendono unicamente dal substrato roccioso (Martignier, 2017).

A partire dalle carte geologiche disponibili per l'area di studio (Tabella 1), sono stati stimati i parametri caratterizzanti i depositi superficiali presenti, attraverso la letteratura presente in materia e la consulenza di un geologo (dott. Mattia Martinelli). Nello specifico, si sono determinati i seguenti parametri:

- a) indice dei vuoti e[-],
- b) conducibilità idraulica orizzontale $k \left| \frac{m}{s} \right|$
- c) angolo d'attrito φ [°],
- d) densità del materiale $\rho_s \left[\frac{kg}{m^3}\right]$.

Per il modello speditivo la conducibilità idraulica non è un parametro di interesse.

In Tabella 2 sono mostrati i valori assegnati a ciascun parametro in base al deposito superficiale considerato.

Occorre sottolineare come la risoluzione delle carte a disposizione sia molto diversa tra i due Paesi: lo strato informativo sul territorio elvetico ha una risoluzione 4 volte superiore rispetto a quella offerta dalla cartografia geologica italiana, come si può notare anche dalla Figura 1. A livello dell'area di studio, pertanto, ciò comporta una diversa risoluzione nella mappatura della predisposizione al fenomeno di interesse tra i due Paesi.

Tabella 1. Carte geologiche utilizzate per l'identificazione dei depositi superficiali nell'area di studio.

Dataset cartografico geologico				
Paese	Nome prodotto	Fogli	Fonte	Risoluzione
Italia	CARG	16, 17, 31, 32	ISPRA	1:100.000
Svizzera	GeoCover V2	11, 39, 66, 69, 145, 152, 159, 1292, 1293, 1332	Ufficio federale di topografia	1:25.000
			swisstopo	

Tabella 2. Valori assegnati ai parametri di ciascuna tipologia di deposito superficiale identificata sull'area di studio.

Legenda	φ [°]	$\rho_s [kg/m^3]$	k [m/s]	e []
Conoide alluvionale	36	1900	0.01	0.5
Conoidi fluvio-glaciali	37	1900	0.0001	0.5
Copertura morenica sottile/till indifferenziato	33	2000	0.00001	0.7
Depositi detritici, senza granulometria	35	2000	0.0001	0.7
Depositi di palude	25	2000	1.00E-10	1.5
Depositi dislocati da fenomeni gravitativi	28	1800	0.0001	1
Deposito di colata torrentizia	30	1900	0.000000001	0.7
Deposito di contatto glaciale	33	2000	0.00001	0.7
Deposito di debris flow	35	1900	0.00001	0.7
Deposito di spiaggia a sabbie prevalenti	25	1800	0.0001	0.5
Deposito fluvioglaciale	35	2000	0.00001	0.7
Deposito fluvioglaciale cementato	42	2100	0.000000001	1
Deposito fluvioglaciale con coltre alteritica mista	35	2000	0.00001	0.7
Deposito fluvioglaciale con massi erratici	35	1900	0.00001	0.7
Deposito glacio-lacustre	33	1900	0.00001	0.8
Deposito lacustre	25	1800	0.0000001	0.9
Deposito morenico/till indifferenziato	33	2000	0.00001	0.7
Deposito-fluviale	37	1900	0.0001	0.5
Deposito-fluviale cementato	42	2100	0.000000001	1
Detrito di falda	40	1900	1	0.4
Detrito di frana di crollo a componenti grossolani	40	1900	1	0.3
Detrito di versante	40	1900	1	0.3
Detrito di versante a blocchi	43	1900	1.5	0.3
Detrito di versante a componenti grossolani	40	1900	1	0.4
Detrito/coltre alteritica	35	2000	0.0001	0.7
Detrito/coltre alteritica cementata	45	2100	0.000000001	1
Detrito/coltre alteritica con massi erratici	35	2000	0.0001	0.7
Morena	33	2000	0.00001	0.7
Morena con molti massi erratici	36	1900	0.0001	0.6

Fondo Europeo di Sviluppo Regionale

Morena con coltre detritica mista	33	1900	0.00001	0.7
Morena con massi erratici e coltre detritica mista	33	1900	0.00001	0.7
Scivolamento di materiale sciolto	40	1900	1	0.4
Terreni alluvionali	36	1900	0.00001	0.7
Terreni alluvionali: ghiaia prevalente	37	1900	0.0001	0.5
Terreni alluvionali: limo prevalente	30	1800	0.000001	0.9
Terreni alluvionali: sabbia prevalente	33	1900	0.00001	0.8
Terreni alluvionali: silt prevalente	30	1800	0.000001	0.9
Torba	25	2000	1.00E-10	1.5
Travertino	90	2700	1	0.3
Sabbia di Novazzano	25	1800	0.0001	0.5
Valanga di roccia	43	1900	1.5	0.3

Si può notare la presenza della formazione Travertino nella tabella dei parametri dei depositi (Tabella 2), sebbene sia una roccia calcarea, in quanto presente nella mappa dei depositi consultata. Si è deciso di conservare anche le aree catalogate come Travertino nella lista dei depositi in quanto, grazie alla sua elevata permeabilità rispetto alle altre rocce affioranti, permette la filtrazione di acqua e la creazione di un flusso subsuperficiale. Tuttavia, si è attribuito un angolo d'attrito molto alto in modo da evitare il franamento degli elementi corrispondenti, che infatti risultano dall'analisi incondizionatamente stabili.

Figura 1. Distribuzione dei depositi superficiali nell'area transfrontaliera di studio sulla base della cartografia disponibile.

reg

Dati di copertura del suolo

Ai fini della valutazione della predisposizione di un territorio allo scivolamento superficiale, la presenza di aree boscate lungo i versanti riveste un ruolo incisivo nella stabilità della coltre detritica (Cohen & Schwarz, 2017).

Ci sono casi in cui la presenza di vegetazione favorisce infatti la sedimentazione di sottili strati di deposito anche con pendenze molto alte, grazie all'incremento della resistenza al taglio fornito dall'apparato radicale. Per questo motivo, per gli elementi che si trovano in aree boscate, l'angolo d'attrito è stato maggiorato del 40% (Schmidt, et al., 2001) (D'Odorico & Fagherazzi, 2003).

Nel presente studio, si sono considerati gli strati informativi sulle aree boscate dei due Paesi alla massima risoluzione disponibile, al fine di intervenire poi il più precisamente possibile sui valori degli angoli d'attrito dei depositi. In Tabella 3 sono riportati i dataset utilizzati per ricavare la distribuzione delle aree boscate. Per quanto riguarda il territorio italiano, dalla banca dati DUSAF sono stati estratti tutti i poligoni aventi codice *Corine Land Cover* (terzo livello) tra 311 e 314, estremi inclusi. Dal geodatabase SwissTLM3D si sono invece considerati i poligoni etichettati come "foresta" e "foresta aperta". La risoluzione di quest'ultimo dato non è dichiarata esplicitamente nei metadati, ma viene comunque indicato che la precisione geometrica dello strato è tra 1-3 m. L'unione dell'informazione proveniente dai due dataset permette di ottenere la distribuzione delle aree boscate sul territorio di studio (Figura 2).

Dataset cartografico copertura aree boscate				
Paese	Nome prodotto	Fonte	Risoluzione	
Italia	DUSAF 6.0	Regione Lombardia	1:10.000	
Svizzera	swissTLM3D	Ufficio federale di topografia swisstopo	N.D.	

Tabella 3. Carte di copertura del suolo utilizzate per estrarre lo strato informativo sulle aree boscate.

Figura 2. Distribuzione delle aree boscate nell'area di studio.

Metodo di analisi

Il modello speditivo è un modello stazionario che consente di mappare le aree che, per via della morfologia e delle caratteristiche dei depositi ivi presenti, sono incondizionatamente stabili o instabili a prescindere dal grado di saturazione S_r della coltre detritica, individuando, allo stesso tempo, quelle aree con propensione al franamento superficiale.

Il modello si basa sulla teoria del pendio indefinito (Figura 3) con la superficie del versante parallela alla superficie di taglio, così come la superficie satura, al di sotto della quale avviene il moto di filtrazione stazionario.

Figura 3. Schema delle forze su un elemento di strato superficiale con contributo idraulico

Si definisce ω come il rapporto tra l'altezza dello strato saturo *h*, visto in senso dunniano, e la profondità della coltre detritica *z*. Assumendo che tutta l'acqua sia contenuta nella matrice solamente al di sotto della linea della superficie satura, si ha che:

$$S_r = \frac{V_w}{V_v} = \frac{Ahn}{Azn} = \frac{h}{z} = \omega$$

Dove V_w è il volume d'acqua, V_v è il volume dei vuoti e n la porosità della matrice definita come $n = \frac{V_v}{V_t} = \frac{e}{1+e}$.

L'aumento del grado di saturazione all'interno dello strato superficiale comporta un alleggerimento dello stesso dovuto alla sottospinta dell'acqua U in corrispondenza dell'interfaccia tra substrato roccioso e manto superficiale (Megahan, 1983) e può portare all'instabilità dello strato.

La stabilità di un pendio, generalmente espressa dal Fattore di Sicurezza (FS) viene valutata rapportando le azioni stabilizzanti con quelle sollecitanti.

La resistenza a taglio in corrispondenza del potenziale piano di rottura, considerando un terreno non coesivo (c' = 0), è

$$\tau_f = (\sigma - u) \tan(\varphi)$$

con $\sigma = [(z - h)\gamma_s + h\gamma_{sat}]\cos^2(\theta)$ sforzo totale in direzione normale al piano di rottura, $u = h\gamma_w \cos^2(\theta)$ pressione neutra dell'acqua e φ = angolo d'attrito del materiale dell'elemento.

Il fattore di sicurezza del pendio considerato, definendo lo sforzo di taglio come

 $\tau = [(z - h)\gamma_s + h\gamma_{sat}]\sin(\theta)\cos(\theta)$

dove θ è la pendenza locale della cella, è dato da

$$FS = \frac{\tau_f}{\tau} = \frac{(z-h)\gamma_s + h\gamma'}{(z-h)\gamma_s + h\gamma_{sat}} \frac{\tan(\varphi)}{\tan(\theta)}$$

Introducendo la gravità specifica del solido $G_s = \frac{\rho_s(1+e)}{\rho_w}$, il grado di saturazione S_r , il quale è definito come h/z secondo le ipotesi iniziali e l'indice dei vuoti e, si possono sostituire le seguenti espressioni

$$\frac{\gamma_s}{\gamma_w} = \frac{G_s + eS_r}{1 + e} \qquad \qquad \frac{\gamma_{sat}}{\gamma_w} = \frac{G_s + e}{1 + e} \qquad \qquad \frac{\gamma'}{\gamma_w} = \frac{G_s - 1}{1 + e}$$

e quindi il fattore di sicurezza si può scrivere come

$$FS = \frac{G_s + eS_r - S_r(1 + eS_r)}{G_s + eS_r - S_r e(1 - S_r)} \frac{\tan(\varphi)}{\tan(\theta)}$$

Se il fattore di sicurezza indica instabilità ($FS \le 1$) in condizioni di saturazione nulla, $S_r = \omega = 0$ (h = 0), si può presumere che non possa essersi depositata uno strato tale da creare un fenomeno di soil

slip, perciò la condizione di "instabilità incondizionata", che decreta l'annoveramento delle celle tra i non-depositi, è data da:

GESTIS

$$\frac{\tan \varphi}{\tan \theta} \le 1$$

Le zone che, invece, risultano stabili ($FS \ge 1$) anche in condizioni di completa saturazione ($S_r = \omega = 1, h = z$), sono definite "incondizionatamente stabili" e possono essere contraddistinte dalla proprietà:

$$\frac{\tan\varphi}{\tan\theta} \le \frac{G_s - 1}{G_s + e}$$

Per i pixel che non soddisfano le precedenti condizioni non può essere decretata la stabilità senza considerare la componente idraulica del processo. Questi depositi hanno una propensione al franamento e la loro stabilità è da valutare attraverso, ad esempio, un modello in transitorio di cui si illustrano ampiamente le basi scientifiche e le procedure nella relazione generale del prodotto P16 dell'Attività 3.3 del Progetto Interreg GESTI.S.CO.

Si noti come entrambe le condizioni necessarie per valutare in maniera incondizionata la stabilità o l'instabilità di una cella siano indipendenti sia da S_r che dallo spessore dello strato z.

I dati richiesti in ingresso al modello speditivo sono pertanto un sottoinsieme di quelli necessari al modello in transitorio, ovvero:

a) DEM dell'area di studio;

rreg

- b) Angolo di attrito φ , densità ρ_s e indice dei vuoti *e* per ogni tipologia di deposito superficiale individuata;
- c) Copertura aree boscate sul territorio di studio.

Risultati

La mappatura della propensione al franamento superficiale della coltre detritica nell'area GESTI.S.CO evidenzia come tutti i rilievi dell'area prealpina tra il Verbano e il Lario siano potenzialmente predisposti al fenomeno degli scivolamenti superficiali.

I depositi stabili (categoria "incondizionatamente stabile") si concentrano perlopiù nei fondivalle elvetici e nelle aree pianeggianti delle province di Como e Varese; tuttavia, è possibile apprezzare nelle mappe la presenza di tali aree anche in corrispondenza delle zone montuose, grazie anche al contributo offerto dalla vegetazione.

Le aree incondizionatamente instabili si dispongono lungo i versanti più impervi, dove le pendenze locali assumono valori importanti che non permettono il deposito di strati detritici ma si ha verosimilmente roccia nuda con sottile copertura detritica molto instabile, ma che non può dar vita a una frana superficiale. Per questa ragione queste aree sono state considerate al pari delle zone prive di depositi superficiali e non è quindi presente la mappatura.

Il grafico di Figura 4 sintetizza i risultati ottenuti riguardo la predisposizione del territorio di studio agli scivolamenti superficiali: quasi il 15% dell'area coperta da depositi superficiali ha propensione al franamento superficiale e necessita di analisi più approfondite con modelli che considerano la precipitazione locale e il flusso subsuperficiale e dati provenienti da indagini in loco.

Figura 4. Stabilità dei depositi superficiali nell'area di studio in base ai risultati della modellazione speditiva.

Occorre ricordare i risultati risentono della risoluzione della cartografia geologica disponibile: se il territorio elvetico è coperto da carte geologiche alla risoluzione 1:25.000, per il territorio italiano non si scende sotto la scala 1:100.000, con importanti conseguenze sulla mappatura dei depositi superficiali. Tale differenza è chiaramente percepibile anche nelle mappe di output.

Bibliografia

Cohen, D., & Schwarz, M. (2017). Tree-root control of shallow landslides. *Earth Surface Dynamics 5.3*, 451-477.

D'Odorico, P., & Fagherazzi, S. (2003). *A probabilistic model of rainfall-triggered shallow landslides in hollows: A long-term analysis.*

- Martignier, L. (2017). Influence des formations superficielles sur l'évolution des sols du Jura Suisse: origins, composition et transformation minéral parental. *Mémoire de la SVSN*.
- Megahan, W. F. (1983). Hydrologic effects of clearcutting and wildfire on steep granitic slopes in Idaho. *Water Resources Research, 19*(3), 811-819.
- Saulnier, G.-M., Beven, K., & Obled, C. (1997). Including spatially variable effective soil depths in TOPMODEL.
- Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., & Shaub, T. (2001). *Root cohesion variability and shallow landslides susceptibility in the Oregon Coast Range.*

Varnes, D. J. (1978). Slope movement types and processes.

